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Any regulation of risk increases risk
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Abstract We show that any objective risk measurement algorithm mandated by
central banks for regulated financial entities will result in more risk being taken by
those financial entities than would otherwise be the case. Furthermore, the risks taken
by the regulated financial entities are far more systemically concentrated than they
would have been otherwise, making the entire financial system more fragile. This
result leaves three options for the future of financial regulation: (1) continue regulat-
ing by enforcing risk measurement algorithms at the cost of occasional severe crises,
(2) regulate more severely and subjectively by fully nationalizing all financial entities,
or (3) abolish all central banking regulations, including deposit insurance, thus allow-
ing risk to be determined by the entities themselves and, ultimately, by their depositors
through voluntary market transactions, rather than by the taxpayers through enforced
government participation.

Keywords Regulation · Crisis · Risk management · Value-at-risk · Risk · Basel

JEL Classification G18 · G21 · G28 · G38

1 Introduction

When depositors become anxious about the safety of their deposits in a particular
bank, they rush to withdraw their money because the remaining assets are paid out
on a first-come first-served basis and if there is not enough for everyone, latecomers
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will receive nothing. Such bank runs force banks to liquidate whatever assets they
had purchased with the deposits, often at a substantial loss. Instead of letting the free
market determine how each bank invests its deposits, governments seek to avoid such
runs by offering deposit insurance: depositors are assured their money is safe no matter
what. Deposit insurance makes people indifferent to the safety of their banks and so
they do not bother running to withdraw their money even if their bank is on the brink of
insolvency. Conversely, the lack of deposit insurance makes people concerned about
safety and imposes discipline on the banks. Peria and Schmukler (2001) empirically
document the existence of such market discipline on banks in the complete absence of
deposit insurance, or when deposit insurance is not credible, in Argentina, Chile, and
Mexico during the 1980s and 1990s. Ioannidou and de Dreu (2006) show that deposit
insurance did indeed significantly reduce market discipline in Bolivia from 1998 to
2003, and that the effect of market discipline completely vanishes when insurance
covers 100 % of the possible loss.

The trouble is that deposit insurance eliminates depositors’ responsibility for the
safety of their assets. Any insured bank is just as good as any other. The Federal Reserve
Board and the Statistics of Income Division of the Internal Revenue Service sponsor
a triennial Survey of Consumer Finances to provide, among other things, detailed
information about the respondents’ use of financial services. Bucks et al. (2009) report
that for the four such surveys conducted in 1998, 2001, 2004, and 2007, the number
one response consumers cited as the most important reason for choosing their primary
financial institution was the location of the bank’s offices, with more than 40 % of
respondents indicating geographical convenience as their most important reason. The
second and third most popular reasons were low fees and the ability to obtain many
services at one place, at about 15 % of responses each. Safety and the absence of risk
were listed as next to last, at only 2 % on average. In short, with deposit insurance,
consumers are indifferent to the risks banks take.

What does this consumer indifference to bank risk mean for the banks? What would
you do if you could start a bank with deposits insured by the government? You might
invest prudently and grow your business responsibly. Or you might buy lottery tickets:
if you win, you keep virtually all the profits; if you lose, you have no personal liability
anyway. And, as we saw from the Survey of Consumer Finances, you are likely to
be able to attract depositors simply by offering convenient locations and low fees
because customers do not care what kind of risk you take: even if you lose, they will
get their money back from the government. Hendrickson and Nichols (2001) compared
Canadian and U.S. bank data in a historical study to conclude that deposit insurance
does indeed increase risk taking. Calem and Rob (1999) show that even a deposit
insurance surcharge does not deter banks near insolvency from increasing risk.

But governments cannot just blindly guarantee the deposits of any financial institu-
tion. They cannot allow reckless risk taking. So what can they do? They must impose
restrictions on banks for them to qualify for the deposit insurance and its ancillary
benefits, such as overnight lending, borrowing of excess funds, and other clearing
operations.

Chief among the restrictions that governments and central banks place on individual
banks is the amount of risk capital that banks must allocate to support a position.
For example, if you as a bank want to buy $100 worth of IBM stock, how much risk
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capital do you need to reserve such that you are able to withstand extreme losses
without being forced to liquidate under duress?

The most commonly used approach in evaluating the reserve requirement is value-
at-risk (VaR). Though the VaR is technically the worst-case loss of a truncated his-
torical distribution, it is at heart merely a multiple of the standard deviation of the
portfolio value, for two reasons. First, regulations often allow banks to use parametric
estimation methods based on continuous distributions, such as the Gaussian, so long as
they apply an additional multiple on their resulting number to compensate for fat tails.
Second, suppose that the VaR is computed nonparametrically using actual distribution
history and that the returns are generated from a non-Gaussian distribution with an
excess kurtosis. Even in that situation, the VaR is still usually some relatively stable
multiple of the standard deviation.

Thus, governments allow a bank to hold a portfolio so long as the bank sets aside
risk capital equal to some constant c times the historical standard deviation of that
particular portfolio. This algorithm has undergone some evolution from the original
Basel (1988, 1996) agreement of 1988 through the most recent changes (Basel 2006)
and the new changes now being phased in (Basel 2.5) and expected to take effect in 2013
(Basel 2011), with the most recent changes coming in the wake of the global financial
crisis. Broadly, the evolution in regulation has gone from a constant, depending only
on asset class, to depending on the current VaR, to (most recently) depending on the
sum of the current VaR and the worst-case VaR during a historical stress period for
the asset under consideration, such as 2008–2009.

The standard requirement called for risk capital of three times the 10-day 99 %
VaR. The 10-day standard deviation is about

√
10 = 3.16 times the daily standard

deviation. The 99 % VaR is about 2.33 standard deviations from the inverse cumulative
distribution function of the standard normal. So the standard requirement in effect
called for a market risk reserve requirement for a portfolio of c = 3.16×2.33×3 = 22
times the portfolio’s historical daily standard deviation. For portfolios that historically
moved about 1 % per day on average, the risk requirement would have been about 22 %.

In any event, the regulation has always been some function over past prices and
returns. The form of the function may change, but unless the regulator personally
inspects and approves each possible trade or portfolio, thus effectively nationalizing
all financial services and bringing them under purely political control, the only way
to regulate is to provide a list of clear and objective rules.

The problem is that any such rules to reduce risk will result in more risk. The
crux of this paper consists of the following argument: Any objective risk regulation
rules discriminate among investment opportunities in the sense that some investments
become more attractive than others based on the formal regulatory algorithm. Any
such discrimination leads to a distortion of investment opportunities because banks
will tend to switch into the more favored investments, and, finally, any such distortion
leads to increased individual and systemic risk.

Duchin and Sosyura (2011) document that bailed-out banks subsequently increase
risk, and they do so within asset classes, so that the increased riskiness is less apparent.
The authors further note that the bailed-out banks subsequently appear safer according
to capitalization requirements, but, in fact, are much riskier. Thus, they conclude that
the response by banks to capital requirements may hinder the efficacy of risk regulation.
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Going further, we show here by a more general argument that any risk regulation will
ultimately result in more systemic risk.

A great deal of literature focuses examination on big banks and on comparing vari-
ous possible regulatory changes. Saunders and Walter (2012) note that one implication
of risk socialization is the likelihood of certain institutions becoming too big or too
interconnected to be allowed to fail. Gatzert and Schmeiser (2011) find that the ben-
efits commonly attributed to risk diversification within financial conglomerates are
often overstated. Cao and Illing (2010) analyze optimal regulatory responses in the
presence of systemic liquidity shocks. By contrast, we do not focus only on the biggest
banks or on marginally different regulatory proposals, but on the more fundamental
question of whether regulation itself can reduce systemic risk, regardless of the size
of the bank.

Hermsen (2010) points out that Basel regulations do not specify a method for cal-
culating VaR and hence banks will choose that VaR algorithm that allows them to
establish riskier positions. Our approach here is similar in spirit in that we agree that
banks will change their portfolio allocation algorithm in response to the regulatory
rules. However, Hermsen’s argument can be entirely addressed by a new Basel accord
stipulating either more restrictions on the choice of VaR model or explicitly spec-
ifying how VaR must be calculated. Our finding, on the contrary, continues to hold
regardless of whatever other regulations are passed, even if the VaR model is explicitly
specified.

Kaplanski and Levy (2007) culminate a long line of literature that assumes expected
utility maximizing banks in a mean–variance framework to examine the effect of VaR
regulation. They find that there is an optimal VaR-based regulation, although current
Basel levels exceed that optimal amount. Yet we will show that any regulation will
result in more risk. Why the discrepancy? Kaplanski and Levy (2007) assume that
regulated banks continue to act in a mean–variance world; in other words, regulations
result in a change in allocations but no change in the allocation algorithm. Here, how-
ever, we argue that there is a substantial behavioral change between no regulation and
some regulation that results in banks changing the way they determine their portfolio.

The differences between our conclusions and those of Kaplanski and Levy (2007)
can be illustrated in our main example of VaR-based regulation. Kaplanski and Levy
assume that the true future variance is known and examine the changes in the mean–
variance frontier induced by regulations. Here, we argue that banks will change their
portfolio based on the random value of the estimate of variance, that the banks will
be systematically biased toward those securities whose variance erroneously and ran-
domly appears low, that the future variance of those securities should theoretically
be higher, and that, as predicted, the future variance is indeed higher in empirical
tests.

2 Theory and calculation

For the simplest case, imagine there are m identical securities, each of which has
returns that are independently normally distributed with zero mean and true standard
deviation σ , and we have a history of n periods for each of them. Think of m as being
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a few thousand securities and of n as being about 60 monthly returns, or 5 years of
data.

What is the distribution of the sample standard deviations si of each of the securities?
Simply by chance, about half the securities will have sample standard deviations above
σ , and half below. More specifically, the sample standard deviations follow a χ2

distribution, under which the probability of a sample standard deviation being below
σ is greater than one-half and decreases to its limiting value of one-half as the number
of observations increases. For m = 1,000 and n = 60, we should expect about ten
securities to exhibit a sample standard deviation <80 % of its true standard deviation
σ , regardless of the particular value of σ . Let us prove a specific theorem.

2.1 Theorem: the conditional expected value of the sample standard deviation

Suppose that yi , i = 1, 2, . . . , n, are independent and identically distributed N (μ, σ 2)

normal returns and the sample standard variances s2
n are defined, as usual, by

s2
n = 1

n − 1

n∑

i=1

(yi − ȳ)2

where

ȳ = 1

n

n∑

i=1

yi .

Then we can calculate the conditional expected value of the sample standard deviation
as a percentage of the true standard deviation for any level α between 0 and 1 as follows:

E(sn|sn ≤ sn,α)

σ
= Kn

P(χ2
n ≤ χ2

n−1,α)

α
(1)

where

sn,α is the number such that P(sn ≤ sn,α) = α, (2)

χ2
n−1,α is the number such that P(χ2

n−1 ≤ χ2
n−1,α) = α,

χ2
n is the Chi-square random variable with n degrees of freedom, (3)

Kn = �( n
2 )

�( n−1
2 )( n−1

2 )
1
2

, and

�(x) is the gamma function. (4)

Similar results hold for higher tails by everywhere substituting “≥” for “≤”.
Furthermore, a constant Kn converges quickly to 1:

lim
n→∞ Kn = 1. (5)
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2.2 Proof of Theorem 2.1

Let us find the p.d.f. of sn . First, because the ratio of the sample variance to the true
variance is distributed as χ2,

(n − 1)
s2

n

σ 2 ∼ χ2
n−1.

Its c.d.f. is

Fsn (x) = P(sn ≤ x) = P(s2
n ≤ x2) = P

(
χ2

n−1 ≤ n − 1

σ 2 x2
)

= Fχ2
n−1

(
n − 1

σ 2 x2
)

(6)

where Fχ2
n−1

(x) is the c.d.f. of χ2
n−1.

Therefore, the p.d.f. of sn is

fsn (x) = d

dx
Fsn (x) = 2(n − 1)x

σ 2 fχ2
n−1

(
n − 1

σ 2 x2
)

where fχ2
n−1

(x) is the p.d.f. of χ2
n−1:

fχ2
n−1

(x) = 1

2
n−1

2 �
( n−1

2

) x
n−1

2 −1e−x/2, x ≥ 0.

We can rewrite fsn (x) as

fsn (x) = 2

(
n − 1

2

) n−1
2 1

�( n−1
2 )σ n−1

xn−2e− (n−1)x2

2σ2 . (7)

Now, let us find the expected value of the sample standard deviation, conditional
on it being in a low percentile.

E(sn|sn ≤ sn,α) = 1

α

sn,α∫

0

2

(
n − 1

2

) n−1
2 1

�( n−1
2 )σ n−1

xn−1e− (n−1)x2

2σ2 dx .

Using the substitution (n − 1)x2 = ny2, we obtain

E(sn|sn ≤ sn,α) = Kn
σ

α

√
n−1

n sn,α∫

0

2
(n

2

) n
2 1

�( n
2 )σ n

yn−1e− ny2

2σ2 dy.
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From Eq. (7) we see that the last expression has the p.d.f. of sn+1 under the integral
sign. So we can rewrite it as

E(sn|sn ≤ sn,α) = Kn
σ

α
P

(
sn+1 ≤

√
n − 1

n
sn,α

)
. (8)

To calculate the probability on the right-hand side, we use Eq. (1) to write

α = P(sn ≤ sn,α) = P(s2
n ≤ s2

n,α) = P

(
σ 2

n − 1
χ2

n−1 ≤ s2
n,α

)

= P

(
χ2

n−1 ≤ n − 1

σ 2 s2
n,α

)

thus showing that

n − 1

σ 2 s2
n,α = χ2

n−1,α.

Therefore, we can rewrite Eq. (8) as

E(sn|sn ≤ sn,α) = Kn
σ

α
P

(
s2

n+1 ≤ n − 1

n
s2

n,α

)
= Kn

σ

α
P

(
σ 2

n
χ2

n ≤ n − 1

n
s2

n,α

)

= Kn
σ

α
P

(
χ2

n ≤ n − 1

σ 2 s2
n,α

)
= Kn

σ

α
P

(
χ2

n ≤ χ2
n−1,α

)

thus proving the theorem in Eq. (1).
To prove that Kn → 1, we note that according to Stirling’s formula

lim
z→∞

�(z)√
2π zze−z z− 1

2

= 1.

To take advantage of this formula, we rewrite Eq. (4) as

Kn = �( n
2 )

�( n−1
2 )( n−1

2 )
1
2

= A · B · C

where

A = �
( n

2

)

√
2π

( n
2

) n
2 e− n

2
( n

2

) 1
2

, B =
√

2π
( n−1

2

) n−1
2 e− n−1

2
( n−1

2

) 1
2

�
( n−1

2

) ,

C = e− n
2 ( n

2 )
1
2

e− n−1
2 ( n−1

2 )
1
2

·
(

n

n − 1

) n
2

and by Stirling’s formula A → 1, B → 1, and
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C = e− 1
2

(
n

n − 1

) 1
2 ·

(
n

n − 1

) n−1
2 ·

(
n

n − 1

) 1
2 → 1

because it is well known that

lim
n→∞

(
n + 1

n

)n

= e.

Therefore, Kn → 1 and this completes the proof. Indeed, the convergence is quick,
as even for n = 60, Kn = 0.996.

2.3 Response of the banks

Suppose that the government-mandated risk capital requirement for each security is
some constant c times that security’s sample standard deviation. What would be the
natural response of the banks?

Much like the lottery ticket bank illustrated above, banks would tend toward buying
portfolios that are riskier than they appear. A particular security that had a sample
standard deviation of 80 % of the true standard deviation would let banks spend 20 %
less risk capital than they ought to while maintaining a full exposure to the true risk. And
there would be, on average, approximately ten such securities at any given point in time.

And that is the basic idea. Purely by random chance, a few securities will appear
to have much lower risk than they truly do. Banks will gravitate toward establishing
positions in these securities because they are able to use less risk capital on them than
on arbitrary average positions, and banks do not face significant market discipline for
establishing too much risk because the government guarantees deposits. Therefore,
instead of different banks simply holding different well-capitalized risky positions,
all banks will tend to hold combinations of those few and rare securities that falsely
appear to have decreased risk. If banks and their customers had to bear this risk, they
would avoid holding securities with such low risk reserves; they do it only because it
is not their risk or their customers’, the algorithm set by the regulator allows it, and
they are able to earn higher returns on capital through this use of excess leverage.

While other regulations may aim to preclude each individual bank from concen-
trating its holdings into a few securities, there is no regulation short of nationalization
that could preclude all banks from investing in the same few assets. So the effect of
an algorithmic approach to determining risk capital is that all banks will tend to estab-
lish the maximum position they possibly can in the very few securities that randomly
exhibit lower risk and thus hold lower required risk capital than they should.

Thus, when any one of these particular securities later experience a typical down-
ward movement, it will appear to be a significantly aberrant move from the perspective
of the required risk capital and the observed (low) historical sample standard deviation,
requiring the banks to liquidate those and other positions quickly to raise enough cash
to replenish their reserves. And so a relatively modest move in a few key securities
could suddenly result in the collapse of the entire financial system.
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One might argue that because each asset has an unobserved true volatility and an
observed empirical volatility and nobody knows the relation between the two, it is
not possible to say if the observed empirical volatility is “too low,” and hence the
kind of position picking by banks described here likely would not take place. In other
words, how do we know when we observe a low empirical volatility that it is not
actually an accurate, or perhaps even overstated, reflection of the true volatility? The
answer is that the likelihood of this happening is rare: most likely, the lowest observed
volatility assets exhibit such low numbers because of noise. We quantified this claim
in Theorem 2.1 and will examine it empirically in the next section.

2.4 Empirical evidence

Is there any empirical evidence for this effect? We use the CRSP database of all stocks
listed on the NYSE, AMEX, and Nasdaq (after 1972) and, for each date from January
1932 through December 2003, calculate the standard deviation of the 60 monthly
returns for the 5 years prior to that date and the standard deviation of the 60 monthly
returns for the 5 years after that date. For securities whose history ends <5 years after
the date, we use the standard deviation of however many monthly returns are available.
For each stock we calculate the ratio of the new standard deviation to the old standard
deviation. Then, on each date we sort the stocks based on past standard deviations and
plot for different quantile groups the associated ratio of the new standard deviation to
the old standard deviation.

Figure 1 plots the time series of ratios of new standard deviations to old standard
deviations for five such quantile groups: for the lowest 1 % of past standard deviations,
for the range from 1 to 10 %, for the range from 10 to 90 %, for the range from 90 to
99 %, and for the range from 99 to 100 %. Note that each group always lies above the
next ones. The overall averages for the five groups are, respectively, 1.85, 1.17, 1.00,
0.81, and 0.56. In other words, stocks with the lowest 1 % of past 5-year standard
deviations on average experience an 85 % higher standard deviation in the subsequent
5 years. Thus, empirically, as well as theoretically, stocks that look too good to be true
usually are.

As banks begin to prefer and invest in the regulatorily favored assets, the prices of
those assets should increase, at least temporarily. Indeed, this prediction is supported
by the low-volatility puzzle of Ang et al. (2009), in which assets recently exhibiting
lower volatility tend to have higher future returns.

3 Results and discussion

One possible regulator response to this observation is to require the use of more data,
either by looking further back in time or by requiring the use of more frequent observa-
tions. The two problems with looking further back involve existence and consistency.
Many securities simply do not have that much history, so the longer the required his-
torical lookback is, the greater the penalty for younger securities. Furthermore, the
character of a particular security, especially a stock, may have changed substantially
from the kind of company it was many years ago, either because of a change in business
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Fig. 1 Time series of volatility ratios. The ratios of future 5-year monthly standard deviation to past 5-year
monthly standard deviation, arranged into five quantile groups by past standard deviations, is plotted on
a log scale. Stocks with recent low standard deviation tended to have higher standard deviations going
forward, and vice versa

focus or because of a change in the risk factor loadings and characteristics of the stock
due to growth in market capitalization or revenues or a change in value.

So the alternative remains to require more frequent observations over the same time
period, for example, requiring the use of daily returns rather than monthly returns. Over
5 years, this means that n, the number of periods, increases from 60 to 252×5 = 1,260,
assuming 252 business days per year on average.

As Fig. 2 demonstrates, continuing our assumption of m = 1,000 independent
securities but increasing the number of periods n does indeed decrease the expected
value of the sample standard deviation in the bottom 1 %. Theorem 2.1 derives a
convenient formula for calculating such an expectation. For n = 1,260, the conditional
expected value of the 0.1 % tail is 0.93 times the true standard deviation, meaning

Fig. 2 Expected tail sample standard deviations. The formula for deriving these conditional expected values
of the ratio of the sample standard deviation to the true standard deviation is derived in Theorem 2.1 and
plotted here for a number of periods ranging from 30 to 1,200 and for tail probabilities of 1 % (top line)
and 0.1 % (bottom line). For example, for 60 time periods, the expected values of the standard deviation
are 0.76 and 0.71 times the true standard deviation for the two probabilities, respectively
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even the biggest deviations in sample standard deviation are on average within seven
percentage points of the true risk.

Does this mean that increasing the number of observation periods solves all the
problems of a concentration of risk by banks into a handful of seemingly less risky
securities?

No—for two reasons. First, even a small difference between the required regulatory
risk capital and the true risk of the position may entice banks to prefer such securities
over other securities. Second, the above analysis misses an important aspect of real-
world returns: they are not normal.

One obvious deviation from normality in security returns is fat tails. The normal
distribution has an index of kurtosis, the standardized fourth central moment, of exactly
three. But observed kurtosis often exceeds ten times that amount. For example, the
kurtosis of the daily S&P 500 index returns since 1950 is 25.8.

We can simulate fat-tailed returns with the following simple approximation algo-
rithm: draw from a standard normal distribution but replace all draws within some
small constant ε of zero with a large constant jump h of the same sign as the original
draw. For example, if ε = 0.01 and h=10, then a random draw of −0.005 would be
replaced by −10.

Simulating 1,000,000 such random numbers gives a distribution with a near-zero
mean (0.002 compared with 0.000 for the standard normal), and a very slightly elevated
standard deviation (1.34 compared with 1.00 for the standard normal), but a very
high kurtosis (25.6 compared with 3 for the standard normal). In other words, if we
standardize the results by dividing by the 1.34 standard deviation, we can use this
algorithm to simulate fat-tailed returns.

Using this distribution, we calculate 1,000 different sample standard deviations for
1,260 observation periods, the equivalent of 5 years of daily returns. Figure 3 shows
the histogram of standardized simulated standard deviations. Note that a few securities
are near the 0.80 ratio again, meaning that adding kurtosis to the distribution to better

Fig. 3 Simulated standard deviations or Basel (1988, 1996) risk. There are several securities in the left
part of the histogram near the ratio of 0.8, meaning that, by pure chance, there will always be some small
number of securities that appear to have less risk than they truly do
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Fig. 4 Simulated Basel (2006) risk. There are several securities in the left part of the histogram near the
ratio of 0.8, meaning that even with the addition of the maximum of a rolling standard deviation to the
usual standard deviation of returns, there will always, due to pure chance alone, be some small number of
securities that appear to have less risk than they truly do

match empirical returns offsets the additional accuracy resulting from using more
observation periods.

Thus, for reasonable values of the number of securities m and the number of obser-
vation periods n, there will still emerge a handful of stocks that appear less risky than
they actually are, and that will attract banks to hold them for the same reasons outlined
above.

Could the new requirement of Basel (2006) to add an additional stress term alleviate
this problem? We can answer this question through simulation as well. Simulate 1,260
returns for each of 1,000 securities using the high-kurtosis algorithm described above.
For each sequence of returns, compute both the overall 5-year standard deviation and
the highest rolling yearly standard deviation, and report the sum. Basel (2006) effec-
tively requires a multiple of this sum as risk capital. Figure 4 displays the histogram
of these standardized values as well. Again, there randomly emerge several securities
that appear to have much lower overall risk than the average security. So Basel II’s
addition of “stress” risk does not alleviate the problem.

The risk incentive problem depends implicitly on the limited liability of sharehold-
ers and their call-option-like payoff structure. Thus, even risk-averse shareholders
with diversified investment portfolios will force managers to increase risk whenever
depositors are indifferent.

Depositors are indifferent if their deposits are insured, such as with the FDIC. Could
slight changes to the nature of the FDIC alleviate the problem? Limits on the amounts
insured matter only when they become so low that the transaction costs of opening
multiple accounts become too expensive; thus any reasonable limits on the insurance
are in essence the same as full insurance. On the other hand, if the fees for deposit
insurance required from each bank only reduced the losses of the insured for that bank,
there would be virtually no insurance, depositors would be wary of where they place
their money, and the possibility of bank runs would immediately return.
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What about asset classes for which the past does not represent their full risk? Banks
may prefer assets whose risks are not captured by historical datasets, such as tail risks
and out-of-the-money options where losses are hidden, infrequent, and large. This
concern is real and true and only serves to exacerbate the problems we describe. The
problem is large even when ignoring hidden risks, but our approach is conservative
and the real risk is larger still.

Expected returns are also difficult to estimate. Could the two errors offset each
other? For example, if assets with lower estimates of volatility routinely also showed
lower expected returns, then banks would be less prone to overinvest in them than
otherwise. However, there are five reasons why this is not likely. First, as Merton
(1980) shows, expected returns are even harder to estimate precisely than are standard
deviations. Second, expected returns tend to be less persistent than volatilities. Third,
expected excess returns tend not to be statistically significantly different from zero
in practice. Fourth, even if some assets that appear less risky than they truly are also
exhibit expected returns that are lower than they truly are, the expected returns would
need to be even more understated than the volatility in order for the investment to be
less attractive. Fifth, there would still be other assets that appear less risky than they
truly are whose expected returns are not also expected to be lower. Thus, the estimation
errors of expected returns will not offset the estimation errors of risk.

What about other forms of risk regulation, for instance, risk regulation that addi-
tionally punishes nondiversification in an attempt to discourage overinvestment in the
favored assets? There will still be some measure according to which some invest-
ments or sets of investments will appear more attractive to the regulators due solely
to randomness. This is true for any value function proposed by the regulators. Dif-
ferent value functions produce different risks, but the main argument holds: any such
measure will introduce additional risk because it gives an artificial incentive for the
banks to invest into some regulatorily favored securities that may look attractive only
because of inherent randomness. In other words, different regulations may cause dif-
ferent assets to be favored, but there will always be some that differ from their true risk.
On the other hand, if there are no regulations, the risk of randomness becomes more
diversified across assets and more dispersed across individual banks, thus lowering
systemic risk.

4 Conclusion

The risk capital that banks allocate to their positions must be set by a regulator if
deposits are insured. If, as a first option, the regulator determines the appropriate
risk capital on a case-by-case basis, banks are effectively nationalized and run by the
regulator. This does not often seem to be a palatable choice, and so regulators have
attempted, as a second option, to craft seemingly objective risk measurement rules
that banks are required to follow.

The most common kind of risk measurement rules have been variations of measures
of standard deviation and it turns out that all such rules, for any reasonable length of
history, encourage banks to invest in a few securities that are riskier than they appear,
thus increasing systemic risk.
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The results are even more general, though. Even if regulators require a risk capital
reserve of 100 % of market value for every security, the risk reserve still will not match
the true risk of each security because the price of a security is not necessarily its risk,
and so banks will still tend to invest in the same few riskier assets.

Thus, we conclude that the effect of any objective rules for regulation will result
both in more risk being taken by each individual bank, and by the risks taken by
different banks to be more correlated with each other, resulting in a far more fragile
financial system than would be the case otherwise.

The only other option is to not regulate at all, and to not insure deposits. This would
leave each bank, and its customers and depositors, with the ultimate responsibility of
determining the appropriate risk capital. This option deserves greater consideration in
light of the results of this paper. In the meantime, portfolio managers, risk managers,
policymakers, regulators, and taxpayers ought to be aware of this previously unknown
source of risk.
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